

科学趣话

占

钟

里

的

我们所生活的地球已经演 化了四十多亿年,它围绕着太 阳公转和自转,并被月亮绕 着转,于是出现了春夏秋 冬、白天黑夜、潮涨潮落等 规律性的变化。生活在 地球上的生物随着地 球、太阳、月亮的周期 性变化,逐渐形成的周 期性、有节奏和规律 的身体活动或生长 特征,就像无形的 '时钟",叫做生物

有些生物会将 生长节律"印"在身 体上,比如树木的 年轮、招潮蟹身体 颜色的变化等。 珊瑚外壁上的生 长纹饰和内部骨 骼有时也可以见 到这种周期性的 印记:既有记录昼

夜节律的日生长纹和月生长带,也 有体现出季节温度变化的年生长 环。远古珊瑚的这种周期性生长特 征可以在化石中保存下来,成为古生

美国古生物学家约翰 · 威尔斯开 '古生物钟"研究的先河,他从现代 石珊瑚每年有365条日生长纹得到启 示,发现中泥盆世(约3.8亿年前)一种四 射珊瑚的年生长环中有约400条生长纹, 推断那时每年有约400天。后来,他进一步 列举了古生代珊瑚每年的日生长纹数据:晚 奥陶世,412条;志留纪晚期(约4.2亿年前) 约400条;中泥盆世,平均398条;早石炭世(约 3.4亿年前),398条;晚石炭世(约3.0亿年前). 380-390条。这些数据表明:地质年代愈新,每年 的天数愈少

威尔斯的成果得到了天文学研究的证实。 学家通过长期观察研究,推断地球每10万年日长增加 2秒,这说明地球自转速度在逐渐变慢。据计算,寒武 纪、泥盆纪、石炭纪、三叠纪、白垩纪每天时长依次为 20.8小时、21.6小时、21.8小时、22.4小时和23.5小时, 到现代则延长至24小时

(本栏目由江苏省科普作家协会协办)

一张来之不易的照片

要拍摄黑洞照片,所使用的望远镜必须足够灵敏,能分 辨的细节足够小,从而能保证看得到和看得清。地球上已 有的单个望远镜最大口径也只有500米,并不符合要求

聪明的天文学家们想到一个好办法——搞强强联合, 把地球上现有的一些望远镜"组合"起来,形成一个口径如 地球大小的"虚拟"望远镜,以达到前所未有的灵敏度和分 辨本领。利用多个位于不同地点的望远镜在同一时间进行 联合观测,最后将数据进行相关性分析之后合并,就可以 '拍"出高质量的照片

最终,科学家们选定了来自全球多地的包括南极望远 镜等8个亚毫米射电望远镜,连续进行了数天的联合观测, 随后又经过2年的数据分析才让我们一睹黑洞的真容。

黑洞是如何被"看到"的?

黑洞给人印象最深刻的就是吞噬一切,甚至光线。如 果是孤零零的黑洞,我们真的是没办法采用电磁波手段进 行拍摄

探测黑洞的方法,是找它们的"周边"— --吸积盘和暗 流。

当黑洞存在于一个恒星周围,会将恒星的气体撕扯到 它自己身边,产生一个围绕黑洞旋转的气体盘,即吸积盘。

当吸积气体过多,一部分气体在掉人黑洞视界面之前, 在磁场的作用下被沿转动方向抛射出去,又形成喷流

吸积盘和喷流两种现象,都因气体摩擦而产生了明亮 的光与大量辐射,所以很容易被地球上的科学家通过望远 镜探测到。理论上,黑洞也就有迹可循了。

人类"寻找"黑洞的历程

人类关注黑洞的历史可以追溯到18世纪末。在万有 引力定律提出约百年后,英国科学家约翰·米歇尔在1783 年首次提出,可能存在引力强大到连光线也无法逃离的"暗

创新发明小故事

1915年,爱因斯坦提出真正"预见"黑洞的广义相对

为了爷爷的手不受伤

东海县洪庄中心小学四(1)班 石瑞熙

指导老师 马慧莹

里面的铜和铝等金属有较高的回收价值,所以爷爷要把废旧电

缆线的绝缘皮剥掉。收购站里没有专门剥皮的机器,爷爷每次

一次,爷爷不小心把手划破了,我看到了心里很难受,心想:如果能有一种机器来代替手工剥皮,那爷爷的手就不会受伤了。 我把这个想法告诉了老师,得到老师的肯定和支持。

购买制作剥皮机的材料。材料备齐之后,我找到电焊师傅,请他

按照图纸的要求进行焊接。经过多次的反复调试、改进,终于做

一款小型的废旧电缆线剥皮机。

受伤了

槽的运输轮

朗了,也更加自信了

年科技创新大赛一等奖)

在老师的指导下,我首先把设计构思绘制成图纸,然后又去

机器做好后,我拿去让爷爷试用,不仅效率高,而且很安

我的心里甭提有多高兴了,因为我再也不用担心爷爷的手

在制作的过程中,我遇到了很多困难。首先我不会绘制图

经过这次历练,我学到了很多课本上学不到的知识,对科技

(石瑞熙同学发明的"废旧电缆线剥皮机"获得江苏省青少

纸,在老师的帮助下才顺利完成。其次为了使电缆线在刀口下

不偏离,做了很多次实验,后来受到滑轮的启示,才改用了带凹

小发明也更加感兴趣了。最值得高兴的是,我的性格变得更开

爷爷开了一家废品收购站,经常回收一些废旧电缆线,因为

但其实,就连爱因斯坦也曾经不相信黑洞真实存在。 不过,科学界确实利用广义相对论计算得出,在宇宙中存在

20世纪60年代,美国天体物理学家约翰·惠勒首次将 "黑洞"作为一个科学术语提出,这个词象征着它的黑暗和

此后,科学界不断收获关于黑洞的研究成果。迄今,黑 洞的存在已得到多数天文学界和物理学界科研人员的认

在人类首次获得黑洞照片之前,2015年堪称黑洞研究 个小高峰:引力波探测项目为黑洞的存在提供了明确

知识链接

什么是黑洞

黑洞是爱因斯坦广义相对论预言存在的一种天体。黑 洞是由质量足够大的恒星在核聚变反应的燃料耗尽而"死 亡"后,发生引力坍缩产生的。它具有的超强引力使得光也 无法逃脱它的势力范围,该势力范围称作黑洞的半径或事 件视界

简单而言,黑洞就是一个"黑"色的、连光都逃不出来的 当然,其实黑洞并不"黑",只是它完全不发射、不反 射任何电磁波,仪器和肉眼都无法直接观测。

纸飞机飞呀飞

纸飞机的材质是影响 飞行的一个重要因素。表 面粗糙的纸张与空气摩擦阻 力大,同时太重的纸张所需浮 力也更大,因此,这些纸张制作 的纸飞机都飞不远。所以光滑 的、质量较轻的纸张制作的纸飞 机飞行效果更好,如常用的打印纸 或广告纸页。

的距离。为了保持机身平衡,在折飞 机时,可将机翼向上微折,尾部向上翘 点,这样在飞行过程中,空气对纸飞 机就会有一个向下的推力,进而能够 更加平稳地飞行。同时,纸飞机的机 翼面积越大,在空中飞行的浮力也越 大,飞行的时间就更久

除了折叠的技巧,纸飞机的抛 射角度也是影响其飞行距离的一个 重要因素。投出纸飞机时,发力要 快,角度要准,让飞机呈现出完美的

在扔纸飞机时,我们会发现一 个有趣的现象,很多人都会习惯性 地对着飞机头哈一口气,像是在给 飞机加热,又像在跟飞机对话,让自 己的飞机不要掉链子,要飞远一些。其实,哈的一口气并不能让飞 机飞得更远,只是大家给自己的心 理暗示而已。

不同折法也会影响纸飞机飞行

烟雾报警器:身边的安全哨兵

烟雾报警器是一种常见的 消防预警装置,能够在火灾发 生的初期准确感应到起火所 产生的烟雾,迅速向人们进

般来说,火灾发

展过程大致可以分为初期阶段。

根据不同结构,烟感探测器一 般可以分为离子式烟感探测器、光 电式烟感探测器。二者都是由传 感元件、探测电路、通讯电路等主 要部分组成,而这三大重要组成部 分,由于其光学、物理与电气特性, 难免会受外界环境和自身缺陷的 影响,从而造成探测器的误报与漏 报。因此,在使用中,要想尽可能 避免与减少烟感探测器的误报与 漏报,则需要采取相应的措施,规 避外部干扰因素与探测器的自身 缺陷相作用的情况发生。

为什么早晨有露水时 - 般是晴天?

这是因为晴朗无云的夜 间,地面散热很快,气温迅速下 降,空气中含水汽的能力就减 弱了, 这样水汽就纷纷地凝附 到草叶上、树叶上、石头上。而 多云的夜间,地面上好像盖了 一层大棉被,热量不易散发出 去,气温下降不明显,蓄含的水 汽也就不容易凝结成露水了。

为什么会有海市蜃楼?

在沙漠中行走,有时会突 然在前方出现一个波光闪闪的湖,岸边有树有人还有城楼。 可是走近了,却又什么都没有 了。这是怎么回事呢?原来, 沙漠的温度特别高,而空气的 传热性能又很差。没有风时, 上下气层的气温相差很大。当 太阳光从高空气层进入下面 时,光的速度发生了变化。射 来的光通过折射和反射将远处 的山、水、人的景象映射到人们 面前,海市蜃楼便出现了。

为什么韭菜割了以后 还能生长?

很多小朋友可能还不太清 楚,我们吃的韭菜是齐地面割 下来的,而且每次割完后韭菜 还会再长出新的叶子来,不需 要重新播撒种子。这是怎么回 事呢?

韭菜是一种多年生的草本 植物,一般3至4年后就要把老 株挖掉,重新栽植。韭菜在地 下长着许多鳞茎,茎内储藏着 很多营养物质。韭菜叶生长特 别快,其实不是叶尖在长,而是 从鳞茎中心点向上生长的,所 以割掉上面韭菜叶之后,下面 又重新长出来了。韭菜一般40天就可以割一次;如果肥料 充足,一年能收割5至6次。

为什么甘蔗根部更甜?

甘蔗是制造蔗糖的原料, 其中含有丰富的糖分和水分, 味甘解渴,人们都爱食用,而它 的根部更甜。这是为什么呢? 一般植物都会将制造出来

的养分,一部分供自身成长所 需,另一些多余的部分则会储 藏起来,而储藏的地方多半是 在根部。当然,甘蔗也是 样。由于甘蔗秆身所制造的养 分,绝大部分又是糖类,所以根 部积存的糖分就更加浓厚了

此外,甘蔗叶蒸发需要水分,所以叶多的上端秆身水分 也多,糖分自然被稀释了。而愈接近根部,叶少水分也少,糖 分当然也愈浓了。所以甘蔗下 段尤其是根部比上段甜。

"关心下一代周报"微信 快来扫一扫

行预警。

发展阶段、衰减熄灭阶段。烟雾 报警器具有早期探测火灾信号的 功能,它们普遍的原理是通过检 测烟雾的浓度来实现火灾防范。 当物质燃烧的时候,往往会先产 生烟雾,接着产生可见与不可见 光。而物质由开始燃烧到火势逐 渐变大总有个过程,烟感探测器 则会"捕捉"到物质燃烧时的"信号",并把"捕捉"到的"信号"转变 成电信号,传输给火灾自动报警 系统的控制器。